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ABSTRACT 

 
This work is aimed at finding the optimal investment strategy for an investor under the modified constant elasticity of 
variance (M-CEV) and Ornstein-Uhlenbeck models. We assume that the stock price is governed by modified constant 
elasticity of variance (M-CEV) model, where the investor has an exponential utility preference. We also investigate the 
impact of the correlation of the Brownian motions. Dynamic programming principle, precisely, the maximum principle is 
applied to obtained the Hamilton-Jacobi-Bellman (HJB) equation, on which elimination of variable dependency was 
applied to obtain the closed from solution of the optimal investment strategies. It was verified that the investor’s optimal 
investment strategy when the Brownian motions correlate is greater than the investor’s optimal investment strategy when 

the Brownian motions do not correlate by a fraction, ൜ఝఋమௌ(మംశభ)ାఝఋ
మௌమം ൠ.  
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INTRODUCTION 
 
Among the many problems researched into in financial 
mathematics and actuarial science found in literature is 
financial asset allocation problems in discrete and 
continuous time. The origin of this can be traced to 
Merton, Merton (1969) and Merton (1971). 
 
Merton, 1971 solved the problem of an investor whose 
goal was to maximize his expected utility when investing 
in stock and consumption is allowed where the underlying 
asset was modeled by Black-Scholes model with a given 
utility preference. Markowitz‘s work gave rise to modern 
portfolio theory which is based on the assumption that the 
investing public’s efforts are geared towards the 
minimization of risk to gain the possible optimum return. 
He showed that different portfolios with varied levels of 
risk and return helped an investor to decide the level of 
risk he could accommodate to enable diversification of his 
portfolios. It is expected that the investor is rational and 
could react within these premise taking decisions which is 
hoped to maximize his return under a certain level of 
uncertainty. The volatility the investor would accept in his 
alternative portfolio is done by making a selection that is 

parallel to the efficient frontier that would enable him 
achieve a maximum return for the quantum of risk he has 
assumed. One of the ways the examination of optimal 
portfolios may be complemented is by approximating 
different expected value of returns for a number of times 
for every risk taken. In the theory of interest mathematics 
and optimal portfolio selection, utility maximization is 
given proper attention as it a mode of assessing ones 
satisfaction for making an investment. Based on this, 
many scholars have been motivated to analyze investment 
problems using stochastic control technique.  
 
Karatzas et al. (1987) used the martingale technique to 
solve investment problems bothering on utility 
maximization where the price process of the risky asset 
followed the geometric Brownian motion for an 
incomplete market. This implies that the volatility of the 
risky asset is deterministic which empirical evidence did 
not supported, hence it become apparent that the use of 
stochastic volatility model is assumed to be more realistic. 
 
An extension of the geometric Brownian motion model is 
the constant elasticity of variance model which is a 
stochastic volatility formula. It is used to capture the 
implied volatility. Gao (2009) used this constant elasticity 
of variance model to model life insurance annuity policies 
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and the optimal investment strategies with utility function 
using dynamic programming principle. He studied the 
problem of an investor who wishes to maximize the 
expected utility of terminal wealth when he can invest in 
both a risk-less asset and a risky asset. He applied the 
stochastic optimal control, the Hamilton-Jacobi-Bellman 
(HJB) equation and the maximum principle to transform a 
complex non-linear partial differential equation to a 
simplified partial differential equation from which he 
obtained an explicit solution to the investor’s problem.  
 
Another study Liu et al. (2012) solved a problem of utility 
maximization by transforming a non-linear second-order 
partial differential equation into a linear partial 
differential equation using the method of elimination of 
dependency on the wealth variable, ݓ, and the price 
variable, π, of the risky asset. They demonstrated this 
within the context of continuous time framework where 
the state variable in the stochastic differential equation is 
wealth and the controls are the assets’ shares. They found 
that the determinants of the change in wealth are the 
stochastic returns on assets and the interest rate on the 
risk-less asset for the given asset allocation at a time. 
 
This research on exponential utility maximization of an 
investor’s strategy using modified constant elasticity of 
variance and Ornstein-Uhlenbeck model takes into 
consideration the cases of when the Brownian motions 
correlate and when they do not correlate. We wish to 
unravel the impact of correlation of the Brownian motions 
on the optimal investment strategy of an investor with the 
modified constraint elasticity of variance using the 
Ornstein-Uhlenbeck models.  
 
We have cited some works we went through to initiate 
this work. Some other works reviewed include; Oksendal 
et al. (2002)  who investigated a market with one risk–
free and one risky asset in which the dynamics of the 
risky assets price ܵ(ݐ) is governed by a Geometric 
Brownian Motion. They considered an investor who 
assumes a bank account that has the opportunity at any 
time to transfer funds between two assets and assume that 
these transfers involve a fixed transaction cost which was 
independent of the size of the transaction plus its cost 
proportional to the size of the transaction. Their 
formulated the problem as a combine stochastic control 
and impulse control type and maximized the cumulated 
expected utility of consumption over the planning 
horizon.  
 
Gu and Gao (2012) obtain optimal strategies and optimal 
value functions under constant elasticity of variance 
(CEV) model on the condition that the insurer could 
purchase excess-of-loss reinsurer. Merton (1971) worked 
on continuous time allocation problem under uncertainty.  
He considered a model in which the processes of the risky 
assets are generally correlated to geometric Brownian 

Motion (GBM) and assumes that the portfolio can 
rebalance instantly with no cost. His maximized the net 
expected utility of consumption and the utility of terminal 
wealth in order to keep the proportions invested in the 
risky assets equal to a constant vector and to a consumer 
at a rate that is proportional to the total wealth. He 
consider an optimal trading strategy which consisted of an 
infinite number of transactions and utility function in the 
constant relative risk aversion (CRRA) case.  
 
Another study Gu (2010) worked on the optimal 
investment maximization using the constant elasticity of 
variance (CEV) model. Also Lin and Li (2011) 
considered an optimal reinsurance investment problem for 
an insurer with jump diffusion risk process under the 
constant elasticity variance (C.E.V.) model. Zhao and 
Rong (2012) studied the portfolio selection problem with 
multiple risky assets under the constant elasticity of 
variance (CEV) model. They obtained a strategy that is 
suitable to the investor’s problem. Guo et al. (2012) 
studied the optimization of define contribution (DC) 
pension scheme under a constant elasticity of variance 
model and obtained the closed from solution of the 
optimal investment strategy for power and exponential 
utility functions. Chang et al. (2013) considered an asset 
and liability management problem with stochastic interest 
rate assuming affine interest rate model. Ihedioha (2016) 
considered exponential utility optimization of an 
investor’s optimal portfolios, under constant elasticity of 
variance model.  
 
Ihedioha et al. (2017) investigated the effect of 
correlation of Brownian motions on an investor’s optimal 
investment and consumption decision under the Ornstein-
Uhlenbeck model. The aim of their work was to obtain a 
closed-form solution to the investment and consumption 
problem where the risk-free asset has a rate of return that 
is driven by the Ornstein-Uhlenbeck stochastic model. 
The maximum principle is applied to obtain the HJB 
equation for the value function. Owing to the introduction 
of the consumption factor and the Ornstein -Uhlenbeck 
stochastic interest rates of return, the HJB equation 
derived became much more difficult and they employed 
the method elimination of dependency on variables to 
transformed the non–linear second-order partial 
differential equation to ordinary differential equation, 
specifically the Bernoulli equation which they solved to 
obtain the investor’s optimal strategy and value function..  
 
In a recent year Ihedioha (2017) studied “optimal asset 
allocation problem for an investor with Ornstein-
Uhlenbeck stochastic Rate Model. Also Ihedioha et al. 
(2017) considered the impact of consumption on an 
investor’s strategy under Ornstein-Uhlenbeck model: The 
case of Non-correlating Brownian motions. Health and 
Platen (2002) developed a consistent pricing and hedging 
process for a modified constant Elasticity of variance 
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model (M-CEV). Their study considered a modification 
of the popular constant elasticity of variance model which 
is used to model the growth optimal portfolio. They 
proved that there is no equivalent risk or neutral pricing 
measure and therefore, the classical risk neutral pricing 
methodology fails. The research showed that a consistent 
pricing and hedging framework can be established by 
application of the bench mark approach. The model 
assumes a bench mark approach using the GOP as 
benchmark.  The derived benchmark provides a consistent 
pricing and hedging framework without requiring the 
existence of an equivalent risk neutral measure. This 
gives rise to a hedge ratio that describes the number of 
units of the savings account at a time that has to be held in 
a corresponding self-financing hedge portfolio. and 
consequently, Combining the self-financing Hedge 
portfolio’s developed and the discounted cost for 
maintaining the hedge portfolio a differential equation is 
obtained which shows that the discounted cost is also 
constant and equal to the initial fair price for the 
contingent claim. The work further shows that benchmark 
and nonnegative price process replicate the contingent 
claim.  
 
Muravey (2017) studied optimal investment problem with 
modified constant elasticity of variance (M-CEV) model 
and obtained closed-form solutions and application to the 
algorithmic tradition. The study took an optimal utility 
function used Laplace transforms to obtain an explicit 
expression for the optimal strategy in terms of confluent 
hyper-geometric functions. For the representations 
obtained, the asymptotic and approximation formulas are 
derived, containing only elementary functions. 
 
MATERIALS AND METHODS 
 
For better understanding of this work we present in brief 
the following concepts: 
 
BROWNIAN MOTION 
 
Brownian motion is seen as a simple continuous 
stochastic process that is widely used in physics, 
Chemistry and in the financial world for modeling 
random movement of molecules of gas or fluctuation in 
an assets price. 
 
In mathematics and economics, Brownian motion is 
described as a continuous time stochastic process called 
wiener process, named in honor of Norbert Wiener. 
 
The Wiener process W(t) is characterized by four facts as 
follows: 
(i). ܼ   =    0. (ii). ܼଵ is almost surely continuous. (iii).ܼ௧  
has independent increments. (iv). ܼ௧ – ܼ௦ ~ܰ(0, ݐ −  (ݏ
(for 0 ≤ ݏ ≤   .(ݐ

,ߤ)ܰ  ଶ) denotes the normal distribution with theߜ
expected value ߤ and variance ߜଶ. The condition that it 
has independent increment means that if 0 ≤ ଵݏ ≤ ଵݐ ≤
ଶݏ ≤ ଶ then ܼ௧భݐ − ܼ௦మ are independent random variables. 
 
ORNSTEIN – UHLENBECK MODEL  
 
There are several approaches to model interest rate and 
commodity price stochastically. One of the ways is the 
Ornstein – Uhlenbeck model (perhaps with modification). 
An Ornstein–Uhlenbeck process r(t), satisfies the 
following stochastic differential equation: 

(ݐ)ݎ݀ = − µ)ߠ  + ݐ݀((ݐ)ݎ   (ݐ)ܹ݀ܵ 
Where θ˃0, µ and 0 ˃ ߜ are parameters and ܹ݀(ݐ) 
denotes the wiener process. We can also call this vasicek 
model. 
 
CONSTANT ELASTICITY OF VARIANCE (CEV) 
MODEL 
 
This is a model used in financial mathematics to model 
stochastic volatility. In an attempt to capture stochastic 
volatility, market shocks and the leverage effects, to this 
end, the model is widely used by practitioners in the 
financial industry for modeling of equities and 
commodity prices. It was developed by John Cox in 1975. 
The constant Elasticity of variance model (process) and is 
analytically traceable, leading to closed–form options 
pricing formulas. The constant elasticity of variance 
(C.E.V) model is a one-dimensional diffusion process that 
solves a stochastic differential equation 
(ݐ)ܵ݀  =  µܵ(ݐ) ݀ݐ +  where S(t) is the,(ݐ)ɤܹ݀(ݐ)ܵߜ 
spot price, t is time and ߤ is a parameter characterizing the 
drift, the instantaneous validity δ(S) = ܵߜఊ(ݐ), ߛ ݀݊ܽ ߜ 
are also parameters and W(t) is a Brownian motion. The 
difference “݀ܵ(ݐ)” represents an infinitesimal small 
change in parameter S. 
The constant δ ≥  0, and the parameter ߛ, which is the 
central feature of the model, controls the relationship 
between volatility and the price of the asset. If ߛ < 1, we 
have the leverage effect, which is commonly observed in 
equity markets where stocks volatility increases as the 
time decreases. As in commodity markets, γ˃1, we have 
inverse leverage effect in which case the volatility of the 
price of a commodity increase as its price increases. 
 
MODIFIED CONSTANT ELASTICITY OF 
VARIANCE MODEL (M- CEV) 
 
A lot of efforts have been made on optimal investment 
problems with the assumption on that the price follows 
geometric Brownian motion (GBM). However, there are a 
lot of empirical studies showing this simple model does 
not properly fit to real market data. Known draw backs 
are the following: 
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(i) GBM model does not properly capture volatility 
smile/skew effects. 

(ii) They ignore the probability the underlying default  
(iii) The constant coefficients do not allow calibration 

of this model to the real term structure of interest 
rates and dividend yields etc. 

 
The (M–CEV) model aims to extend the results of the 
GBM models to a more realistic model. 
 
We choose this model for the following reasons 

(a) The model captures the volatility smile effects 
(b) It allows non–zero probability of the underlying’s 

default (M- C.E.V process can touch zero while 
GBM is always positive) 

(c) It is analytically tractable. 
(d) The model applicable to algorithmic trading 

strategies 
(e) For the M–CEV model, we obtain a close form 

solution in terms of confluent hyper geometric 
functions. 

This model was introduced by Heath and Platen (2002).  
It was applied to the algorithmic trading. 
 
DYNAMIC PROGRAMMING 
 
Dynamic programming or recursive optimization is a 
technique used for obtaining solutions for multi-stage 
decision problems. In general, there is no standard 
mathematical formulation of the variable given and the 
objective of the problem, an equation is developed to fit 
for a particular solution. In today’s world, application of 
dynamic programming has become sacrosanct in our day-
to-day administrative/managerial problems such as 
resource allocation, inventory problems logistics etc.  
Dynamic programming may be classified depending on 
the nature of data at hand as deterministic and stochastic 
or probabilistic models. For the deterministic models, the 
outcome at any decision stage is uniquely determined and 
known.  The technique was developed by Richard 
Bellman in the early (1950s). 
 
Principle of Optimality: It implies that a wrong decision 
taken at an earlier stage does not prevent from taking an 
optimal decision for the remaining stages. Thus, this 
principle is a firm base for dynamic programming 
technique  
 
MAXIMUM PRINCIPLE 
 
In order to find the best control for taking a dynamic 
system from stage to stage sequentially in the presence of 
inhibitors (constraints) or input controls, we apply the 
maximum principle which is a powerful tool in optimal 
control theory. 
 

It was Lev Pontryagin, a Russian mathematician, in 
collaboration with his students that formulated this 
principle, which uses Euler-Lagrangian equation of 
calculus of variation. This principle in an informal way 
states that the control Hamiltonian takes extreme value in 
all admissible control set. The control, minimum or 
maximum has a dependency on the problem and the sign 
convention adopted in defining the Hamiltonian. It is 
called maximum principle because normal convention has 
it that the Hamiltonian that is used will lead to a 
maximum.  
 
Let U be the permissible control set of values, the 
maximum principle states that if the control 
ܷ∗satisfies:(ݐ)∗ݔ)ܪ, ,(ݐ)∗ݑ ,(ݐ)∗ߣ (ݐ ≤
,(ݐ)∗ݔ)ܪ ,(ݐ)ݑ ,(ݐ)∗ߣ ,(ݐ ; ,ܷ߳ݑ ݐ]߳ݐ ,  ,],such thatݐ
ݐ]ଵܥ ߳∗ݔ , ∗ݔ  ,[ݐ ∈ ܿଵ[ݐ,  ] is the optimal co-stateݐ
trajectory (a special type of optimization problem where 
the decision variables are functions rather than real 
numbers) and ߣ∗ ∈ ܤ ∪ ,ݐ]  ]is the optimal co-stateݐ
trajectory, then ܷ∗ is the optimal control. 
 
HAMILTON–JACOBI–BELLMAN (HJB) 
EQUATION 
 
Are second orders, degenerate, elliptic, non-linear partial 
differential equation which are central to optimal control 
theory. The solution of the HJB equation is the cost for a 
given dynamical system with an associated cost function. 
 
When solved locally, the Hamilton–Jacobi Bellman (HJB) 
equation is a necessary condition, but when solved over 
the whole state space, the HJB equation is a necessary and 
sufficient condition for an optimum. The solution is open 
loop, but it also permits the solution of the closed loop 
problem. The Hamilton-Jacobi-Bellman equation can be 
generalized to stochastic system as well. The equation is a 
result of the theory of dynamic programming which was 
pioneered by Richard Bellman and his co-workers. 
 
UTILITY FUNCTION AND EXPONENTIAL 
UTILITY FUNCTIONS 
 
Utility is an economic term introduced by the noted 18th 
century Swiss mathematician Daniel Bernoulli, referring 
to the total satisfaction received from consuming a good 
or service. It could also mean a function that specifies the 
wellbeing of a consumer for all combinations of goods or 
services consumed. 
 
The exponential utility function refers to a specific form 
of utility function that is sometimes referred to as 
uncertainty. It is used in some contexts because of its 
convenience when risk is present, in which case expected 
utility is maximized. Thus the exponential utility function 
is given by: 
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(ݒ)ݑ = (ଵିషೡ)


,    ݂ ≠ 0. 
ܸ is the variable that the economic decision maker prefers 
more of such as consumption, and f is a constant that 
represents the degree of risk preference (f>0 for risk 
aversion, f=0 for risk neutrality, or f<0 for risk seeking). 
In a situation where only risk aversion is allowed, the 
formula is often simplified to (ݒ)ݑ = (1 − ݁ି௩). 
 
MODEL FORMULATION AND THE MODEL  
 
Assuming that an investor trades two assets in the 
financial market; a risky asset (stock) and a riskless (risk 
free) asset (bond) that has a rate of return that is a 
function of time. The dynamics of the price of the risk-
free asset denoted by (ݐ)ܤ is ௗ(௧)

(௧) =  (1)  ݐ݀(ݐ)ݎ
 
The risky asset is governed by the modified constant 
elasticity of variance (M- CEV), model stated as follows; 
ௗௌ(௧)
ௌ(௧) = ߤ] + ݐ݀(ଶܵଶఊܽܥ + ܽܵఊܹ݀ଵ(ݐ)]      (2) 
 
where S(t) denotes the price of the risky asset at time ݐ. ܿ, 
a are constants, µ is the appreciation rate of the risky 
asset,{ܹ(ݐ): ݐ > 0} is a standard Brownian motion in a 
complete probability space (Ώ, ,ܨ ݐ(ܨ) > 0, .( ݐ(ܨ) > 0 
is the augmented filtration generated by the Brownian 
motion ܹ(ݐ), ܽܵఊ(ݐ) is the instantaneous volatility and 
the elasticity ߛ, a parameter for discount factor which 
satisfies the general condition ߛ ≤ 0. If the elastic 
parameter ߛ = 0, then the modified constant elasticity of 
variance (M-CEV) model reduces to geometric Brownian 
motions. 
 
The Ornstein-Uhlenbeck process is one of several 
approaches used to model (perhaps with modifications) 
interest rates, currency exchange rates and commodity 
prices stochastically. It is given as; 
(ݐ)ݎ݀ = ߮൫ߤ − ݐ൯݀(ݐ)ݎ +  (3)           .(ݐ)ଶܹ݀ߜ
 
Let (ݐ)ܭ be the amount of money the investor puts into 
the risky asset at time t, and then [ܸ(ݐ) –  is the [(ݐ)ܭ 
amount of money invested in the risk-free asset, where 
 is the total money invested in both assets. The (ݐ)ܸ
dynamics of the wealth process corresponding to the 
trading strategy (ݐ)ܭ, is the stochastic differential 
equation (SDE)  
(ݐ)ܸ݀ = (ݐ)ܭ ௗௌ(௧)

ௌ(௧) + (ݐ)ܸ] − [(ݐ)ܭ ௗ(௧)
(௧) ,   (4) 

 
Substituting (1) and (2) into 4) we get 
(ݐ)ܸ݀ = ߤ)} − (ݐ)ܭ((ݐ)ݎ + ݐ݀{(ݐ)ܸ(ݐ)ݎ +
(ݐ)ଶܵଶఊܽܥ(ݐ)ܭ +  (5)       .{(ݐ)ఊܹ݀(ଵ)ܵܽ(ݐ)ܭ
 
The quadratic variation of equation (5) is 
൫ܸ݀(ݐ)൯  ଶ =  ܽଶܵଶఊ(ݐ)ܭଶ(ݐ)݀(6)                . ݐ 

Note that at  
.ݐ݀} ݀ ܹ(ଵ)(ݐ)) = .ݐ݀ ݐ݀ =
0, ܽ݊݀ ݀ ܹ(ଵ)(ݐ). ݀ ܹ(ଵ)(ݐ) =  (7)             .{ݐ݀
Suppose an investor has an exponential utility function 
 then the investor’s problem is to find the ,((ݐ)ܸ)ܷ
optimal strategy for 
,ܸ)ܩ ;ݐ ܶ) =  (8)             [((ݐ)ܸ)ܷ]ܧ(௧)ݔܽܯ
 
subject to equation (5) ܸ݀(ݐ) = ߤ)} − (ݐ)ܭ((ݐ)ݎ +
ݐ݀{(ݐ)ܸ(ݐ)ݎ + (ݐ)ଶܵଶఊܽܥ(ݐ)ܭ +  .{(ݐ)ఊܹ݀(ଵ)ܵܽ(ݐ)ܭ
 
THE OPTIMIZATION 
 
This study assumes that the investor has an exponential 
utility preference that is; 
ܷ(ܸ) = −ܽ݁ି,                                       (9) 
 
with absolute risk aversion, 
− "()

 ′() = −݂.                                           (10) 
.We consider the cases; 
 
CASE 1: When the Brownian motions do not 
correlate. (That is ۳(ࢃ() . (()ࢃ =  
 
The Bellman equation corresponding to the investor’s 
problem is 
,′ܸ)ܩ]ܧ(௧)ݔܽܯ ;ݐ ܶ) − ,ܸ)ܩ ;ݐ ܶ)]  =0        (11) 
 
where ܸ′ denotes the wealthy process at time ݐ +  .ݐ∆
The division of both sides of (11) by ∆t and taking limit 
as ∆t tends to zero, we get                                                                                
Max(௧)

ଵ
ௗ௧

[ܩ݀]ܧ = 0.                                                     (12) 

 
The maximum principle states that; 

ܩ݀ =
ܩ߲
ݐ߲

ݐ݀ +
ܩ߲
߲ܵ

݀ܵ +
ܩ߲
ݎ߲

ݎ݀ +
ܩ߲
߲ܸ

ܸ݀ +
߲ଶ

ݎ߲߲ܵ
(ݎ݀ܵ݀)

+
߲ଶܩ

߲߲ܸܵ
(ܸ݀ܵ݀) +

߲ଶܩ
ܸ߲ݎ߲

 (ܸ݀ݎ݀)

+ ଵ
ଶ

ቂడమீ
డௌమ (݀ܵ)ଶ + డమீ

డమ ଶ(ݎ݀) + డమீ
డ௩మ (ܸ݀)ଶቃ.     (13) 
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But,                                   

�

(ݐ)ܸ݀ = {൛൫ߤ − (ݐ)ܭ൯(ݐ)ݎ + (ݐ)ܸ(ݐ)ݎ + ݐൟ݀(ݐ)ଶܵଶఊܽܥ(ݐ)݇
+ܽܵఊ(ݐ)(ݐ)ܭ݀ ଵܹ(ݐ),

(ݐ)ݎ݀ = ൫߬ߠ − ݐ൯݀(ݐ)ݎ + ݀ߜ ଶܹ(ݐ),
(ݐ)ܵ݀ = ߤ](ݐ)ܵ + ݐ݀[(ݐ)ଶܵଶఊܽܥ + ܽܵఊାଵ(ݐ)݀ ଵܹ(ݐ),

൫݀ܵ(ݐ)൯ଶ
= ܽଶܵଶ(ఊାଵ)(ݐ)݀ݐ,

൫݀(ݐ)ݎ൯
ଶ

= ,ݐଶ݀ߜ

൫ܸ݀(ݐ)൯
ଶ

= ܽଶܵଶఊ(ݐ)ܭଶ(ݐ)݀ݐ,
൫݀ܵ(ݐ)ܸ݀(ݐ)൯ = ܽଶܵଶఊ(ݐ)ܵ(ݐ)ݐ݀(ݐ)ܭ,

൫݀(ݐ)ܸ݀(ݐ)ݎ൯ = 0,
((ݐ)ݎ݀(ݐ)ܵ݀) = 0, ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

         

(14)                                                                                                         
 
where  
�݀ ଵܹ(ݐ). ݀ ଶܹ(ݐ) = .ݐ݀ ݐ݀ = .ݐ݀ ݀ ଵܹ(ݐ) = .ݐ݀ ݀ ଶܹ(ݐ) = 0,

݀ ଵܹ(ݐ). ݀ ଵܹ(ݐ) = ݀ ଶܹ(ݐ). ݀ ଶܹ(ݐ) = ൠ ݐ݀

(15) 
 
Using (14) and (15)  in (13), we obtain 

ܩ݀ =
ܩ߲
ݐ߲

ݐ݀ +
ܩ߲
߲ܵ

൛ܵ(ݐ)[ߤ + ݐ݀[(ݐ)ଶܵଶఊܽܥ

+ ܽܵఊାଵ(ݐ)ܹ݀(ଵ)(ݐ)}

+
ܩ߲
ݎ߲

ቊ
൫߬ߠ − ݐ൯݀(ݐ)ݎ
(ݐ)(ଶ)ܹ݀ߜ+

ቋ 

+
ܩ߲
߲ܸ ቊቈ൫ߤ − (ݐ)ܭ൯(ݐ)ݎ + (ݐ)ܸ(ݐ)ݎ

(ݐ)ଶܵଶఊܽܥ(ݐ)݇+
  ቋ(ݐ)(ଵ)ܹ݀(ݐ)ܭ(ݐ)ఊܵܽ ݐ݀

+
߲ଶܩ

߲߲ܸܵ
{ܽଶܵଶఊ(ݐ)ܵ(ݐ)ݐ݀(ݐ)ܭ}

+
߲ଶ

ݒ߲ݎ߲
 {ݐ݀(ݐ)ܭ(ݐ)ఊܵܽߜ߶}

+ ଵ
ଶ

ቂడమீ
డௌమ {ܽଶܵଶఊାଵ(ݐ)݀ݐ} + డమீ

డమ {ݐଶ݀ߜ} +
డమீ
డమ {ܽଶܵఊ(ݐ)ܭଶ(ݐ)݀ݐ}ቃ.                 (16) 
 
Substituting (16) into equation (12) and taking 
expectation we get 

௧ܩ + ܵߤ]௦ܩ + [ଶܵଶఊାଵܽܥ + ߬)ߠ]ܩ − [(ݎ
+ ߤ)]௩ܩ − ݇(ݎ + ݒݎ + ݇ܿܽଶܵଶఊ] 

௦௩ൣܽଶܵ(ଶఊାଵ)݇൧ܩ+ + ௦௦ܩ ቂమௌమംశభ

ଶ
ቃ + ீೝೝఋమ

ଶ
+

ீೡೡ[మௌమംమ]
ଶ

= 0,                     (17) 
 
where 
൧(ݐ)(ଵ)ܹ݀ൣܧ = [(ݐ)(ଶ)ܹ݀]ܧ = 0.      (18) 
 
௧ܩ  ,௦௩ܩ  are first partial derivatives o G andܩ ௦,  andܩ ,
 .௩௩ are second partial derivativesܩ  ௦௦,andܩ
Differentiating (17) with respect to ݇(ݐ), we have; 
ߤ)]௩ܩ − (ݎ + ܿܽଶܵଶఊ] + ௦௩൫ܽଶܵ(ଶఊାଵ)൯ܩ +
( (ݐ)ܭଶܵଶఊܽ)௩௩ܩ = 0.        (19) 
 

Now, solving for (ݐ)ܭ in equation (19) we obtain the 
optimal investment strategy in the risky asset as 
(ݐ)∗ܭ = ିൣ(ఓି)ାమௌమം൧ீೡ

[మௌమം]ீೡೡ
− ೞீೡൣమௌమംశభ൧

ீೡೡ[మௌమം]
.     (20) 

 
Rewriting equation (20) we have 
(ݐ)∗ܭ = − ቂ (ఓି(௧))ீೡ

(మௌమം(௧))ீೡೡ
+ ீೡ

ீೡೡ
+ ௌ ೞீೡ

ீೡೡ
ቃ.              (21) 

 
Let 
G(t, r, s, v) = h(t, s, r)ൣ−aeି୴൧                          (22) 
 
be a solution to equation (19), such that at the terminal 
time ܶ 
h(t, s, r) = 1,                                    (23) 
 
then 
 ܩ௧ = ℎ′ൣିషೡ൧ , ௦ܩ = ℎ௦[−ܽ݁ି௩], ܩ =
ℎ[−ܽ݁ି௩], ௩ܩ = ℎ௩[݂ܽ݁ି௩], ௦௩ܩ = ℎ௩[݂ܽ݁ି௩], ௩ܩ =
ℎ[݂ܽ݁ି௩], ௦௦ܩ = ℎ௦௦[ܽ݁ି௩], ܩ = ℎ[ܽ݁ି௩], ௩௩ܩ =
ℎ௩௩[−݂ܽଶ݁ି௩]                              (24) 
 
Applying (22) and (24) in (21) and simplifying, we obtain 

(ݐ)∗ܭ = (ఓି)ାమௌమംାௌమௌ(మംశభ)

మௌమം
൨.               (25) 

 
CASE II: when the Brownian motions correlate 
.()ࢃࢊൣࡱ) ൧()ࢃࢊ =  (࢚ࢊ࣐
In this case equation (14) becomes 
                    

�

(ݐ)ܸ݀ = {൛൫ߤ − (ݐ)ܭ൯(ݐ)ݎ + (ݐ)ܸ(ݐ)ݎ + ݐൟ݀(ݐ)ଶܵଶఊܽܥ(ݐ)݇
+ܽܵఊ(ݐ)(ݐ)ܭ݀ ଵܹ(ݐ),

(ݐ)ݎ݀ = ൫߬ߠ − ݐ൯݀(ݐ)ݎ + ݀ߜ ଶܹ(ݐ),
(ݐ)ܵ݀ = ߤ](ݐ)ܵ + ݐ݀[(ݐ)ଶܵଶఊܽܥ + ܽܵఊାଵ(ݐ)݀ ଵܹ(ݐ),

൫݀ܵ(ݐ)൯
ଶ

= ܽଶܵଶ(ఊାଵ)(ݐ)݀ݐ,

൫݀(ݐ)ݎ൯
ଶ

= ,ݐଶ݀ߜ

൫ܸ݀(ݐ)൯ଶ
= ܽଶܵଶఊ(ݐ)ܭଶ(ݐ)݀ݐ,

൫݀ܵ(ݐ)ܸ݀(ݐ)൯ = ܽଶܵଶఊ(ݐ)ܵ(ݐ)ݐ݀(ݐ)ܭ,
൫݀(ݐ)ܸ݀(ݐ)ݎ൯ = ,ݐ݀(ݐ)ܭ(ݐ)ఊܵܽߜ߮

((ݐ)ݎ݀(ݐ)ܵ݀) = ,ݐ݀(ݐ)ܭ(ݐ)ܵ(ݐ)ଶఊܵܽߜ߮

 

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

   

      (26) 
 
Also, substituting equation (26) into equation (13),  and 
going through the procedures     we get the new Hamilton-
Jacobi-Bellman equation 
௧ܩ ܵߤ]௦ܩ+ + [ଶܵଶఊܽܥ + ߬)ߠ]ܩ − [(ݎ

+ ߤ)]௩ܩ − ܭ(ݎ + ݒݎ + [ଶܵଶఊܽܥܭ
+ [ܭଶܵଶఊାଵܽ]௦௩ܩ  + [ଶఊାଵ݇ܵܽߜ߮]௦ܩ
+  [ܭఊܵܽߜ߮]௩ܩ

                               + ଵ
ଶ

௦௦[ܽଶܵଶఊାଵ]ܩ] + [ଶߜ]ܩ +
{[[ଶܭଶܵଶఊܽ]௩௩ܩ   = 0.                     (27)                                                                     
 
where  (18) holds. 
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Now the differentiation of (27) with respect to (ݐ)ܭ and 
simplifying gives the optimal strategy for the investor as   
we obtain. 
(ݐ)∗ܭ = − ቂ (ఓି)ீೡ

(మௌమം)ீ௩௩
+ ()ீೡ

ீೡೡ
+ (ௌ) ೞீೡ

ீೡೡ
+ (ఝఋௌ) ೞீೝ

ீೡೡ
+

(ఝఋ)ீೝೡ
(ௌം)ீೡೡ

ቃ.                        (28) 
 
Now applying (24) through (27) and simplifying the 
investor’s optimal strategy under exponential utility 
maximization as  
(ݐ)∗ܭ = − ቂ(ఓି)ିమௌమംିమௌమംశభିఝఋௌమംశభିఝఋ

ିమఋమം ቃ.     (29) 
 
To do away with the dependency on (ݐ)ݎ, we let 
ℎ(ݐ, ,ݏ (ݎ = ,ݐ)ܹ ܵ)[−ܽ݁ି],                                 (30) 
 
such that at the terminal time ܶ, 
ܹ(ܶ, ܵ) = ିೝ      


.                                      (31) 

 
From (30) we see that  
ℎ = ,ݐ)ܹ ܵ)[݂ܽ݁ି].                             (32) 
 
Applying (32) in (29) and simplifying we obtain the 
investor’s optimal strategy whet he Brownian motions 
correlate as 

(ݐ)∗ܭ = (ఓି)ାమௌమംାమௌ(మംశభ)ାఝఋ
మௌమം ൨.         (33) 

 
THE EFFECT OF THE CORRELATION OF 
BROWNIAN MOTIONS 
 
The optimal investment strategy when the Brownian 
motions do not correlate is given by 

ܭ
∗ (ݐ) = (ఓି)ାమௌ(మംశభ)ାమௌమം

మௌమം ൨,                                                                        
as in equation (25), and when the Brownian motions 
correlates by 

ܭ
(ݐ)∗ = (ఓି)ାమௌమംାమௌ(మംశభ)ାఝఋమௌ(మംశభ)ାఝఋ

మௌమം ൨,                                                 
as in equation (33). We deduce from these equations that 

ܭ
(ݐ)∗ = ൜(ఓି)ାమௌ(మംశభ)ାమௌమം

మௌమം ൠ , + ൜ఝఋమௌ(మംశభ)ାఝఋ
మௌమം ൠ, 

and 

݇
(ݐ)∗ = ܭ

∗ (ݐ) + ߮ ൜ఋమௌ(మംశభ)ାఋ
మௌమം ൠ.              (35) 

 
We now consider the following four cases for the 
correlation; 
 
CASE 1: When the correlation is negative: 
 
If 
߮ = −݉ ,                                                      (36) 
 
we have from equation (35) 

݇
(ݐ)∗ = ݇

∗ (ݐ) − ݉ ൜ఋమௌ(మംశభ)ାఋ
మௌమം ൠ.              (37) 

This implies that, the investor’s optimal investment 
strategy when the Brownian motions correlate negatively 
is less than the investor’s optimal investment strategy 
when the Brownian motion do not correlate by a fraction, 
ఋ(మௌ(మംశభ)ାଵ)

మௌమം . 
 
CASE II: When the correlation is be positive 
 
If 
߮ = ݉.                                                             (38) 
we have 
 
݇

(ݐ)∗ = ݇
∗ (ݐ) + ߜ݉ ൜మௌ(మംశభ)ାଵ

మௌమം ൠ.                (39) 
In this case, the investor’s optimal investment strategy 
when Brownian motions correlate positively is greater 
than the investor’s optimal investment strategy when the 
Brownian motions correlate by the fraction, 
ఋ(మௌ(మംశభ)ାଵ)

మௌమം , where ݉ is the correlation coefficient. 
This shows that the investor will require more amount of 
money to invest in the risky asset. 
 
CASE III: When the correlation is unity; 
If                                                                    ߮ = 1,  (40) 
 
we have 

ܭ
(ݐ)∗ = ܭ

∗ (ݐ) + ߜ ൜మௌ(మംశభ)ାଵ
మௌమം ൠ.                                (41) 

This implies that, the investor’s optimal investment 
strategy when the Brownian motion correlate is less than 
the investor’s optimal investment strategy when the 

Brownian motions do not correlate by ߜ ൜మௌ(మംశభ)ାଵ
మௌమം ൠ. 

 
CASE IV: When the correlation is equal to zero. 
If 
߮ = 0,                                                                      (42) 
 
We have 
ܭ

(ݐ)∗ = ܭ
∗  (43)                                                     . (ݐ)

 
In this case the investor’s optimal investment strategy 
when the Brownian motion correlate is equal to the 
investor’s optimal investment strategy when the Brownian 
motions do not correlate. 
 
CONCLUSION 
 
From Equation (35) 

ܭ
(ݐ)∗ =  ܭ

∗ (ݐ) + ߜ߶ ቊ
ܽଶܵ(ଶఊାଵ) + 1

݂ܽଶܵଶఊ ቋ, 

we observe that when the Brownian motion correlate, the 
optimal strategy is greater than when the Brownian 
motions do not correlate by a fraction థఋ{ఈమௌమംశభ}

మௌమം . 
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Also we obtained the effects of the correlation which 
were in the following four perspectives: 

i. When correlation is negative, then the strategy 

reduces by a fraction: ఋ(మௌ(మംశభ)ାଵ)
మௌమം . 

ii. When the correlation is positive, the strategy 

increases by a fraction:  ఋ൫మௌ(మംశభ)ାଵ൯
మௌమം . 

iii. When the correlation is unity, the strategy 
increases by a fraction by ఋ{ఈమௌమംశభ}

మௌమം  
iv. When the correlation is zero, the strategies are in 

equilibrium, (ݐ)ܭ = ܭ
∗  .(ݐ)

 
This study optimizes the exponential utility of an 
investor’s optimal strategy when the Brownian motions 
do not correlate and when they do correlate.  
 
The study elaborates on the financial market assets, 
especially bonds and stocks where the price process of the 
risky asset followed the modified constant elasticity of 
variance (M.C.E.V) model and that of the risk-free asset 
the Ornstein-Uhlenbeck model.  
 
Stochastic optimal control process was applied to obtain 
the corresponding Hamilton-Jacobi-Bellman (HJB) and  
using the maximum principle explicit solutions were 
obtained for the cases of when the Brownian motion do 
not correlate and when the Brownian motions do 
correlate.  
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